MORE VISION

[MORE VISION] BOY GROUP AUDITION


Цэг хурал MORE VISION
Ажилд авах формат Ердийн сонсгол
Ажилд авах хугацаа
Шалторалшуу Male, Born in or after 2005, No nationality restrictions
ажилд авах чиглэл Sing Boy Group Idol Vocal Dance Produce
Нэг товшилтоор дэмжлэг үзүүлэх боломжтой


 

Jay Park, who has expanded various Hip-Hop and R&B culture-based trendy brands, is looking for boy group members who can set the new standards at MORE VISION, the entertainment hub established in March 2022.

 

Eligibility
Male, Born in or after 2005, No nationality restrictions

 

Audition Categories
Vocal, Dance, Rap, Producing

 

Audition Process
1st Online Application Evaluation -> 2nd On-Site Audition -> 3rd On-Site Audition -> Final Acceptance

 

How To Apply
1. 1st Online Application Evaluation

     : Fill out the application (via google form)

 

     [Upload Videos]
     1) Upload a video of your audition category (Vocal, Rap, Dance, or Producing) (about 2 minutes length)
          You may upload videos for all audition categories.
          ex) In case you apply for Rap and Dance, you may upload 1 video each for Rap and Dance.
     2) Self Introduction Video (format and length unrestricted)
 
     * Precautions
        For dance videos, please note that the whole body has to be shot.

        In case there are many video cut edits, it may cause disadvantages to the evaluation. (For all categories)

 

    [Upload Photos]

     1) Upper Body Photo

     2) Whole Body Photo

 

2. There will be individual notifications to the applicants who passed the 1st online application evaluation and then the 2nd on-site audition will be held.
   There will be individual notifications to the applicants who passed the 2nd on-site audition and then the 3rd on-site audition will be held.
 
==
 

ヒップホップ、R&Bジャンルの文化基盤で感覚的なブランドを展開していったパク·ジェボム(Jay Park)が、2022年3月に設立した「MORE VISION(モアビジョン)」で新しい基準を作っていくボーイグループを探しています。

 

応募資格
男性、2005年以降生まれの方、 国籍不問

 

応募部門
ボーカル / ラップ / ダンス / プロデュース

 

応募手続き

1次オンライン書類選考
→ 2次オフラインオーディション
→ 3次オフラインオーディション

→ 最終合格

 

志願方法

1. 1次オンライン書類選考

     : エントリシート作成 (Googleフォーム)

 

     [映像アップロード]
     1) 応募部門(ボーカル、ラップ、ダンス、プロデュースの中) 自由映像 (2分前後)
          希望する応募部門の映像をすべてアップロード可能。
          ex)ラップ、ダンス部門を応募する時にラップ映像、ダンス映像を各1つずつアップロード。
     2) 自己紹介映像(フォームおよび分量は自由)
 
      * 注意事項
         ダンス映像の場合、全身がよく見えるように撮影お願いします。

         映像に編集が多くなっている場合、選考に不利益がある場合があります。(全部門該当)

 

     [写真アップロード]
     1) 上半身の写真

     2) 全身写真

 

2. 1次合格者に限り個別通知した後、2次オフラインオーディション実施

   2次合格者に限り個別通知した後、3次オフラインオーディション実施

 

==

 

朴宰范先后创办过以Hip Hop和R&B文化为基础的潮流品牌,并于2022年3月份创立了MORE VISION, 现正式招募将引领全新标准的国际男团。

 

申请资格
男生,2005年以后出生者,国籍不限

 

招募领域
唱歌 / 舞蹈 / 说唱 / 音乐制作

 

申请程序
第一轮线上材料审核
→ 第二轮线下海选
→ 第三轮线下海选

→ 最终合格

 

 
申请方法
1. 第一轮线上材料审核

    : 填写下列申请书 (Google表单)

 

    [上传视频]
    1) 申请领域 (歌唱,说唱,舞蹈,制作等) 自由发挥视频(2分钟以内)
         可上传多个申请领域的视频
         例) 同时申请说唱和舞蹈时可上传1个说唱视频和1个舞蹈视频
     2) 自我介绍视频 (形式与视频长度不限)
 
     *注意事项
       舞蹈视频拍摄时需要全身出镜

       视频如若存在过多剪辑会对审核结果不利。(所有领域全部包括在内)

 
     [上传招聘]
     1) 上半身照片

     2) 全身照片

 

2. 将单独通知第一轮审核合格者进行第二轮过线下海选

   将单独通知第二轮审核合格者进行第三轮过线下海选





  import numpy as np
  import matplotlib.pyplot as plt

  # 입력 데이터
  X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])
  # 정답 레이블
  y = np.array([[0], [1], [1], [0]])

  # 시그모이드 활성화 함수
  def sigmoid(x):
      return 1 / (1 + np.exp(-x))

  # 시그모이드의 도함수
  def sigmoid_derivative(x):
      return x * (1 - x)

  # 신경망 클래스
  class NeuralNetwork:
      def __init__(self, input_size, hidden_size, output_size):
          # 가중치 초기화
          self.U = np.array([[0.2, 0.2, 0.3], [0.3, 0.1, 0.2]])
          self.W = np.array([[0.3, 0.2], [0.1, 0.4], [0.2, 0.3]])
          # 편향 초기화
          self.b1 = np.zeros((1, hidden_size))
          self.b2 = np.zeros((1, output_size))
          # 에포크와 오차 기록을 위한 리스트
          self.epochs = []
          self.errors = []

      def forward(self, X):
          # 은닉층 계산
          self.hidden_layer = sigmoid(np.dot(X, self.U) + self.b1)
          # 출력층 계산
          self.output_layer = sigmoid(np.dot(self.hidden_layer, self.W) + self.b2)

      def backward(self, X, y, learning_rate):
          # 출력층의 오차 계산
          output_error = y - self.output_layer
          output_delta = output_error * sigmoid_derivative(self.output_layer)

          # 은닉층의 오차 계산
          hidden_error = np.dot(output_delta, self.W.T)
          hidden_delta = hidden_error * sigmoid_derivative(self.hidden_layer)

          # 가중치 및 편향 업데이트
          self.U += learning_rate * np.dot(X.T, hidden_delta)
          self.W += learning_rate * np.dot(self.hidden_layer.T, output_delta)
          self.b1 += learning_rate * np.sum(hidden_delta, axis=0)
          self.b2 += learning_rate * np.sum(output_delta, axis=0)

      def train(self, X, y, epochs, learning_rate):
          for epoch in range(epochs):
              self.forward(X)
              self.backward(X, y, learning_rate)
              self.epochs.append(epoch + 1)
              self.errors.append(np.mean(np.abs(y - self.output_layer)))

      def predict(self, X):
          self.forward(X)
          return self.output_layer

  # 신경망 모델 생성
  input_size = 2
  hidden_size = 3
  output_size = 2
  learning_rate = 1.0
  epochs = 1000

  model = NeuralNetwork(input_size, hidden_size, output_size)
  # 모델 훈련
  model.train(X, y, epochs, learning_rate)

  # 예측 결과 출력
  predictions = model.predict(X)
  for x, y_pred in zip(X, predictions):
      print(f"x1: {x[0]}, x2: {x[1]}, y1: {y_pred[0]:.4f}, y2: {1 - y_pred[0]:.4f}")

  # 에포크와 오차 그래프 출력
  plt.plot(model.epochs, model.errors)
  plt.xlabel('epoch')
  plt.ylabel('Error')
  plt.show()




  def sigmoid(x):
      return 1 / (1 + np.exp(-x))

  def sigmoid_derivative(x):
      return x * (1 - x)

  def mse_loss(y_true, y_pred):
      return ((y_true - y_pred) ** 2).mean()

  def forward_propagation(X, weights, biases):
      layers = [X]
      for weight, bias in zip(weights, biases):
          layers.append(sigmoid(np.dot(layers[-1], weight) + bias))
      return layers

  def back_propagation(y_true, layers, weights, biases, learning_rate=1.0):
      error = y_true - layers[-1]
      for i in reversed(range(len(weights))):
          delta = error * sigmoid_derivative(layers[i+1])
          error = np.dot(delta, weights[i].T)
          weights[i] += learning_rate * np.dot(layers[i].T, delta)
          biases[i] += learning_rate * np.sum(delta, axis=0)
      return weights, biases

  np.random.seed(0)

  weights = [
      np.random.uniform(0, 1, (1, 6)),
      np.random.uniform(0, 1, (6, 4)),
      np.random.uniform(0, 1, (4, 1))
  ]
  biases = [
      np.zeros((1, 6)),
      np.zeros((1, 4)),
      np.zeros((1, 1))
  ]

  df = pd.read_csv('nonlinear.csv')
  X = df['x'].to_numpy().reshape(-1, 1)
  y_true = df['y'].to_numpy().reshape(-1, 1)

  for _ in range(100):
      for i in range(X.shape[0]):
          layers = forward_propagation(X[i:i+1], weights, biases)
          weights, biases = back_propagation(y_true[i:i+1], layers, weights, biases)

  domain = np.linspace(0, 1, 100).reshape(-1, 1)
  y_hat = forward_propagation(domain, weights, biases)[-1]

  plt.scatter(df['x'], df['y'])
  plt.scatter(domain, y_hat, color='r')
  plt.show()


  model = keras.models.Sequential([
      keras.layers.Dense(32, activation='tanh', input_shape=(1,)),
      keras.layers.Dense(16, activation='tanh'),
      keras.layers.Dense(8, activation='tanh'),
      keras.layers.Dense(4, activation='tanh'),
      keras.layers.Dense(1, activation='tanh'),
  ])

  optimizer = keras.optimizers.SGD(learning_rate=0.1)
  model.compile(optimizer=optimizer, loss='mse')

  df = pd.read_csv('nonlinear.csv')
  X = df['x'].to_numpy()
  X = X.reshape(-1, 1)
  y_label = df['y'].to_numpy()

  model.fit(X, y_label, epochs=100)

  domain = np.linspace(0, 1, 100).reshape(-1, 1)
  y_hat = model.predict(domain)
  plt.scatter(df['x'], df['y'])
  plt.scatter(domain, y_hat, color='r')
  plt.show()


  #Iris 데이터를 입력으로 하여 Versicolor, Setosa, Virginica 3종의 품종을 구분하는 심층신경망을 아래 조건을 이용하여 구성
  import numpy as np
  import pandas as pd
  import tensorflow as tf
  from sklearn.model_selection import train_test_split
  from sklearn.preprocessing import StandardScaler
  import matplotlib.pyplot as plt

  # Iris 데이터 불러오기
  url = "https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data"
  df = pd.read_csv(url, header=None)

  # 입력과 출력 데이터 분리
  X = df.iloc[:, :-1].values
  y = df.iloc[:, -1].values

  # 레이블 숫자로 매핑
  label_mapping = {
      'Iris-setosa': 0,
      'Iris-versicolor': 1,
      'Iris-virginica': 2
  }
  y = np.array([label_mapping[label] for label in y])

  # 훈련 데이터와 테스트 데이터로 분할 (stratify 옵션을 사용하여 클래스 비율 유지)
  X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, stratify=y, random_state=42)

  # 특성 스케일링
  scaler = StandardScaler()
  X_train = scaler.fit_transform(X_train)
  X_test = scaler.transform(X_test)

  # 신경망 모델 구성
  model = tf.keras.models.Sequential()
  model.add(tf.keras.layers.Dense(64, activation='relu', input_shape=(4,)))
  model.add(tf.keras.layers.Dropout(0.2))
  model.add(tf.keras.layers.Dense(32, activation='relu'))
  model.add(tf.keras.layers.Dense(10, activation='relu'))
  model.add(tf.keras.layers.Dense(3, activation='softmax'))

  # 모델 컴파일
  model.compile(optimizer='adam',
                loss='sparse_categorical_crossentropy',
                metrics=['accuracy'])

  # 모델 훈련
  history = model.fit(X_train, y_train, batch_size=5, epochs=30, verbose=0)

  # 테스트 데이터에 대한 정확도 평가
  _, test_accuracy = model.evaluate(X_test, y_test)

  # 그래프 출력
  plt.plot(history.history['loss'], label='Loss')
  plt.plot(history.history['accuracy'], label='Accuracy')
  plt.title('Model Loss and Accuracy')
  plt.xlabel('Epoch')
  plt.legend()
  plt.show()

  print("Test Accuracy:", test_accuracy)


  # Fashion MNIST 데이터를 이용하여 다음 조건을 만족하는 신경망을 생성 + 이미지 출력
  import tensorflow as tf
  from tensorflow import keras
  import matplotlib.pyplot as plt
  import numpy as np

  # Fashion MNIST 데이터 불러오기
  fashion_mnist = keras.datasets.fashion_mnist
  (train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()

  # 데이터 전처리: 0~1 사이의 값으로 스케일링
  train_images = train_images / 255.0
  test_images = test_images / 255.0

  # 모델 구성
  model = keras.Sequential([
      keras.layers.Flatten(input_shape=(28, 28)),
      keras.layers.Dense(128, activation='relu'),
      keras.layers.Dropout(0.2),
      keras.layers.Dense(32, activation='relu'),
      keras.layers.Dense(10, activation='softmax')
  ])

  # 모델 컴파일
  model.compile(optimizer='adam',
                loss='sparse_categorical_crossentropy',
                metrics=['accuracy'])

  # 모델 훈련
  history = model.fit(train_images, train_labels, batch_size=64, epochs=10, validation_split=0.25)

  # 테스트 데이터에 대한 정확도 평가
  test_loss, test_accuracy = model.evaluate(test_images, test_labels)

  # 그래프 출력
  plt.figure(figsize=(12, 5))

  # Loss 그래프
  plt.subplot(1, 2, 1)
  plt.plot(history.history['loss'], label='Training Loss')
  plt.plot(history.history['val_loss'], label='Validation Loss', linestyle='dashed')
  plt.title('Model Loss')
  plt.xlabel('Epoch')
  plt.ylabel('Loss')
  plt.legend()

  # Accuracy 그래프
  plt.subplot(1, 2, 2)
  plt.plot(history.history['accuracy'], label='Training Accuracy')
  plt.plot(history.history['val_accuracy'], label='Validation Accuracy', linestyle='dashed')
  plt.title('Model Accuracy')
  plt.xlabel('Epoch')
  plt.ylabel('Accuracy')
  plt.legend()

  plt.tight_layout()
  plt.show()


  # 첫 25개 테스트 이미지 가져오기
  test_images_subset = test_images[:25]
  test_labels_subset = test_labels[:25]

  # 이미지 분류 및 출력
  predictions = model.predict(test_images_subset)
  predicted_labels = np.argmax(predictions, axis=1)

  class_labels = {
      0: "T-shirt/top",
      1: "Trouser",
      2: "Pullover",
      3: "Dress",
      4: "Coat",
      5: "Sandal",
      6: "Shirt",
      7: "Sneaker",
      8: "Bag",
      9: "Ankle boot"
  }

  plt.figure(figsize=(10, 10))
  for i in range(25):
      plt.subplot(5, 5, i + 1)
      plt.imshow(test_images_subset[i])
      plt.title(class_labels[predicted_labels[i]])
      plt.axis('off')
  plt.tight_layout()
  plt.show()

  print("Test Accuracy:", test_accuracy)




  #Keras에서 제공하는 MNIST 데이터에 대하여 합성곱 신경망을 통한 학습을 진행하라. 6만개의 훈련 데이터를 사용하여 학습하고 1만개의 테스트 데이터를 사용하여 정확도를 검증하라
  import tensorflow as tf
  from tensorflow import keras
  from tensorflow.keras import layers

  # 시드 고정
  tf.random.set_seed(0)

  # MNIST 데이터
  (x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
  x_train = x_train.astype("float32") / 255.0
  x_test = x_test.astype("float32") / 255.0

  # 과제 11-1-1
  # CNN
  model = keras.Sequential()
  model.add(layers.Conv2D(4, (2, 2), strides=(2, 2), padding="same", activation="relu", input_shape=(28, 28, 1)))
  model.add(layers.MaxPooling2D((2, 2)))

  # Flatten
  model.add(layers.Flatten())
  model.add(layers.Dense(32, activation="relu"))
  model.add(layers.Dense(10, activation="softmax"))

  model.compile(
      optimizer=keras.optimizers.Adam(learning_rate=0.001),
      loss=keras.losses.SparseCategoricalCrossentropy(),
      metrics=["accuracy"],
  )

  # 모델 학습
  model.fit(x_train, y_train, epochs=1, batch_size=32)
  test_loss, test_acc = model.evaluate(x_test, y_test)

  print("테스트 데이터의 손실값 : {:.2f}".format(test_loss))
  print("테스트 데이터의 정확도 : {:.2f}".format(test_acc))

  # 과제 11-1-2 98 % 이상되게 하라 정확도가
  # CNN
  model = keras.Sequential()
  model.add(layers.Conv2D(8, (3, 3), strides=(1, 1), padding="same", activation="relu", input_shape=(28, 28, 1)))
  model.add(layers.MaxPooling2D((2, 2)))
  model.add(layers.Conv2D(16, (3, 3), strides=(1, 1), padding="same", activation="relu"))
  model.add(layers.MaxPooling2D((2, 2)))

  # Flatten
  model.add(layers.Flatten())
  model.add(layers.Dense(128, activation="relu"))
  model.add(layers.Dense(10, activation="softmax"))

  model.compile(
      optimizer=keras.optimizers.Adam(learning_rate=0.001),
      loss=keras.losses.SparseCategoricalCrossentropy(),
      metrics=["accuracy"],
  )

  # 모델 학습
  model.fit(x_train, y_train, epochs=1, batch_size=32)
  test_loss, test_acc = model.evaluate(x_test, y_test)

  print("테스트 데이터의 손실값 : {:.2f}, 테스트 데이터의 정확도 : {:.2f}".format(test_loss, test_acc))

  # Keras에서 Fashion MNIST 데이터를 불러와 아래와 같은 신경망을 구성하고 테스트 데이터에 대해 정확도를 계산하라
  import tensorflow as tf
  from tensorflow import keras
  from tensorflow.keras import layers
  import matplotlib.pyplot as plt

  # Fashion MNIST 데이터 로드
  (x_train, y_train), (x_test, y_test) = keras.datasets.fashion_mnist.load_data()
  x_train = x_train.reshape(-1, 28, 28, 1).astype("float32") / 255.0
  x_test = x_test.reshape(-1, 28, 28, 1).astype("float32") / 255.0
  y_train = keras.utils.to_categorical(y_train, num_classes=10)
  y_test = keras.utils.to_categorical(y_test, num_classes=10)

  # 모델 생성
  model = keras.Sequential()
  model.add(layers.Conv2D(32, (3, 3), activation="relu", input_shape=(28, 28, 1)))
  model.add(layers.MaxPooling2D((2, 2)))
  model.add(layers.Conv2D(64, (3, 3), activation="relu"))
  model.add(layers.MaxPooling2D((2, 2)))
  model.add(layers.Conv2D(32, (3, 3), activation="relu"))
  model.add(layers.Flatten())

  # DENSE
  model.add(layers.Dense(1568, activation="relu"))
  model.add(layers.Dense(128, activation="relu"))
  model.add(layers.Dense(32, activation="relu"))

  # 출력층
  model.add(layers.Dense(10, activation="softmax"))

  # 과제 11-2-1
  # 모델 출력
  model.compile(
      optimizer=keras.optimizers.Adam(),
      loss=keras.losses.CategoricalCrossentropy(),
      metrics=["accuracy"],
  )
  model.fit(x_train, y_train, epochs=1)
  _, test_acc = model.evaluate(x_test, y_test)
  print("테스트 정확도: {}".format(test_acc))

  # 과제 11-2-2
  # 테스트 이미지 분류 및 출력
  x_test_subset = x_test[:25]
  y_test_subset = y_test[:25]
  predictions = model.predict(x_test_subset)
  predicted_labels = tf.argmax(predictions, axis=1).numpy()
  class_labels = [
      "T-shirt/top",
      "Trouser",
      "Pullover",
      "Dress",
      "Coat",
      "Sandal",
      "Shirt",
      "Sneaker",
      "Bag",
      "Ankle boot"
  ]

  plt.figure(figsize=(10, 10))
  for i in range(25):
      plt.subplot(5, 5, i + 1)
      plt.imshow(x_test_subset[i].reshape(28, 28))
      plt.title(class_labels[predicted_labels[i]])
      plt.axis('off')
  plt.tight_layout()
  plt.show()



  #51개의 시퀀스를 가지는 Sine 함수 100개를 생성하고, 마지막 시퀀스의 값(51번째 값)을 예측하는 모델을 RNN, LSTM, GRU를 이용하여 구현하고 그래프를 출력
  import numpy as np
  import matplotlib.pyplot as plt
  from tensorflow.keras.models import Sequential
  from tensorflow.keras.layers import SimpleRNN, LSTM, GRU, Dense
  from sklearn.metrics import mean_squared_error

  # 데이터 생성
  x = np.arange(0, 10.2, 0.2)
  num_samples = 100
  num_sequences = 51
  start_points = np.random.choice(100, num_samples)
  dataset = []
  for start in start_points:
      y = np.sin(x + start)
      dataset.append(y)
  dataset = np.array(dataset)
  X = dataset[:, :50]
  y = dataset[:, -1]

  # 모델 생성
  model_list = [SimpleRNN, LSTM, GRU]


  for i, model_name in enumerate(model_list):

      X_train, X_test, y_train, y_test = X[:80], X[80:], y[:80], y[80:]
      model = Sequential()
      model.add(model_name(10, input_shape=(50, 1)))
      model.add(Dense(1))
      model.compile(optimizer='adam', loss='mean_squared_error')

      # 모델 학습
      history = model.fit(X_train[:, :, np.newaxis], y_train, epochs=50, verbose=0)
      y_train_pred = model.predict(X_train[:, :, np.newaxis])
      y_test_pred = model.predict(X_test[:, :, np.newaxis])
      train_mse = mean_squared_error(y_train, y_train_pred)
      test_mse = mean_squared_error(y_test, y_test_pred)

      # 출력
      fig, axs = plt.subplots(2, 2, figsize=(10, 8))
      axs[0, 0].plot(history.history['loss'])
      axs[0, 0].set_xlabel('epoch')
      axs[0, 0].set_ylabel('loss')

      axs[1, 0].plot(y_train, label='Train Actual', color='black', linewidth=2.0)
      axs[1, 0].plot(y_train_pred, label='Train Predicted', color='red')
      axs[1, 0].set_title('Train')
      axs[1, 0].legend(loc='upper right')

      axs[0, 1].scatter(y_train, y_train_pred, label='Train', marker='o')
      axs[0, 1].scatter(y_test, y_test_pred, label='Test', color='orange', marker='o')
      axs[0, 1].set_xlabel('y')
      axs[0, 1].set_ylabel('y_hat')
      axs[0, 1].legend(loc='upper left')

      axs[1, 1].plot(y_test, label='Test Actual', color='black', linewidth=2.0)
      axs[1, 1].plot(y_test_pred, label='Test Predicted', color='red')
      axs[1, 1].set_title('Test')
      axs[1, 1].legend(loc='upper right')

      axs[1, 0].text(0.05, 0.9, f'MSE: {train_mse:.5f}', transform=axs[1, 0].transAxes)
      axs[1, 1].text(0.05, 0.9, f'MSE: {train_mse:.5f}', transform=axs[1, 1].transAxes)

      plt.tight_layout()
      plt.show()